MATH 54 - MIDTERM 1

PEYAM RYAN TABRIZIAN

Name:

Instructions: This midterm counts for 20% of your grade. You officially have 50 minutes to take this exam (although I will try to give you more time). Good luck, and don't worry, you'll be fine!

Note: Please check the following box if it applies to you:
I am taking a Summer Session A course (May 21 - June 29), and I feel that this has prevented me from showing you my full math potential

1		10
2		10
3		15
4		20
5		15
6		15
7		15
Bonus		3
Total		100

Date: Friday, June 29th, 2012.

1. (10 points, 2 pts each)

Label the following statements as TRUE (T) or FALSE (F). Write your answers in the box below!

NOTE: In this question, you do NOT have to justify any answers! Also, don't spend too much time on each question!
(a) If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a pivot in the last column, then the system $A \mathbf{x}=\mathbf{b}$ has no solution.
(b) If A and B are invertible 2×2 matrices, then $(A B)^{-1}=$ $A^{-1} B^{-1}$
(c) If A is a 3×3 matrix such that the system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{3}.
(d) The general solution to $A \mathbf{x}=\mathbf{b}$ is of the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{0}$, where \mathbf{x}_{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{x}_{0} is the general solution to $A \mathbf{x}=\mathbf{0}$.
(e) If P and D are $n \times n$ matrices, then $\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(D)$

(a)	
(b)	
(c)	
(d)	
(e)	

2. (10 points, 5 points each) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) If A and B are any 2×2 matrices, then $A B=B A$
(b) The matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0\end{array}\right]$ is not invertible.

3. (15 points) Solve the following system of equations (or say it has no solutions):

$$
\left\{\begin{array}{c}
2 x+2 y+z=2 \\
3 x+4 y+2 z=3 \\
x+2 y-z=-3
\end{array}\right.
$$

4. (20 points) Solve the following system $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & -3 \\
2 & 3 & 1 & -6 \\
-1 & 2 & -4 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
8 \\
3
\end{array}\right]
$$

Write your answer in (parametric) vector form

54/Math 54 Summer/Exams/All the things.jpg

5. (15 points, 5 points each)
(a) Calculate $A B$, or say that $A B$ is undefined.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

(b) Calculate $A B$, or say that $A B$ is undefined.

$$
A=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 2 \\
3 & 0
\end{array}\right]
$$

(c) Calculate A^{2}, where:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

6. (15 points) Find A^{-1} (or say ' A is not invertible') where:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 1 \\
2 & 0 & -1
\end{array}\right]
$$

7. (15 points) Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & 1 \\
2 & 0 & 4 & 0 & 5 \\
1 & 2 & 5 & -2 & 0 \\
2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

Bonus (3 points) Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
1 & y & y^{2} & y^{3} \\
1 & z & z^{2} & z^{3} \\
1 & t & t^{2} & t^{3}
\end{array}\right]
$$

where x, y, z, t are distinct real numbers. This is called a Vandermonde matrix!

Hint: Calculating this directly is going to drive you nuts! Can you think about another way of calculating the determinant?

Note: You might find the formula $p^{3}-q^{3}=(p-q)\left(p^{2}+p q+q^{2}\right)$ (where p and q are real numbers) useful!
(Scratch work)

Any comments about this exam? (too long? too hard?)

